lunes, 24 de octubre de 2011

POLARIDAD DEL ENLACE COVALENTE Y SU EFECTO SOBRE LAS PROPIEDADES FISICAS


Cuando un mismo átomo aporta el par de electrones, se dice que el enlace covalente es polarizado. Aunque las propiedades de enlace covalente polarizado son parecidas a las de un enlace covalente normal (dado que todos los electrones son iguales, sin importar su origen), la distinción es útil para hacer un seguimiento de los electrones de valencia y asignar cargas formales. Una base dispone de un par electrónico para compartir y un ácido acepta compartir el par electrónico para formar un enlace covalente coordinado.
Se produce en elementos iguales, es decir, con una misma electronegatividad por lo que su resultado es 0. Un átomo no completa la regla del octeto.
Características del enlace covalente polar
  • Enlace sencillo: se comparten 2 electrones de la capa de valencia. Ej: F-F
  • Enlace doble: se comparten cuatro electrones, en dos pares, de la capa de valencia. Ej: O=O
  • Enlace triple: se comparten 6 electrones en 3 pares de electrones de la capa de valencia. Ej: NΞN
  • Enlace cuádruple: es la unión de 8 electrones en 4 pares de la capa de valencia. Ej: CC
  • Enlace quíntuple: es la unión de 10 electrones en 5 pares de la capa de valencia
En general cuando un átomo comparte los dos electrones para uno solo se llama enlace covalente dativo y se suele representar con una flecha (→)
PROPIEDADES FISICAS
Punto de Fusión:
En un sólido cristalino las partículas que actúan como unidades estructurales, iones o moléculas se hallan ordenada de algún modo muy regular y simétrica; hay un arreglo geométrico que se repite a través de todo el cristal. La Fusión es el cambio del arreglo ordenado de las partículas en el retículo cristalino a uno más desordenado que caracteriza a los líquidos. La fusión se produce cuando se alcanza una temperatura a la cual la energía térmica de las partículas es suficientemente grande como para vencer enlaces que las mantienen en sus lugares.
Punto de ebullición:
Aunque en un líquido las partículas tienen un arreglo menos regular y mayor libertad de movimiento que en un cristal, cada una de ellas es atraída por muchas otras. La ebullición implica la separación de moléculas individuales, o pares de iones con carga opuesta, del seno del líquido. Esto sucede, cuando se alcanza una temperatura suficiente para que la energía térmica de las partículas supere las fuerzas de cohesión que las mantienen unidas en la fase líquida.
Los compuestos polares presentan puntos de fusión y ebullición más altos que los no polares de peso molecular semejante, debido a que las fuerzas intermoleculares son más fáciles de vencer que las fuerzas interiónicas.
Las moléculas que presentan enlaces de hidrógeno entre sí tienen un punto de fusión y ebullición más elevado que los que no lo presentan y tienen el mismo peso molecular. Esto es debido a que hay que emplear energía adicional para romper las uniones moleculares.
Solubilidad: Cuando se disuelve un sólido o un líquido, las unidades estructurales (iones o moléculas) se separan unas de otras y el espacio entre ellas pasa a ser ocupado por moléculas del solvente. Sólo el agua y otros solventes muy polares son capaces de disolver, apreciablemente compuestos iónicos al formar los enlaces ión dipolo, que en conjunto aportan suficiente energía para romper las fuerzas interiónicas en el cristal. En la solución cada ión está rodeado por muchas moléculas del solvente, por lo que se dice que está solvatado (o hidratado si el solvente es agua)
Los compuestos no polares o débilmente polares se disuelven en solventes no polares o apenas polares, ejemplo el metano se disuelve en tetracloruro de carbono (CCl4) pero no en agua.

Los compuestos orgánicos que forman puentes de hidrógeno son solubles en agua, entre ellos tenemos: los alcoholes, fenoles y ácidos carboxílicos que presentan un grupo (OH). También los aldehídos y cetonas forman puente de hidrógeno con el agua al igual que los éteres debido a la presencia del átomo de oxígeno (O=, -O-)
Las aminas primarias y secundarias  forman puente de hidrógeno entre sí y con el agua debido a la presencia del grupo amino (-NH2), las aminas terciarias por no tener hidrógeno unido a nitrógeno no forman puente de hidrógeno entre sí, pero si lo forman con el agua; por esta razón casi todos los compuestos son solubles en agua.
Los compuestos que contienen –O- u –OH serán solubles si la razón entre carbonos y grupos –O- u –OH no es mayor que 3:1, así ninguno de los fenoles será altamente soluble en agua pues ya que el miembro más pequeño contiene seis carbonos (C6H5OH).

No hay comentarios:

Publicar un comentario